EQUATION OF CIRCLE

Pearson Edexcel – Thursday 4 June 2020 - Paper 2 (Calculator) Higher Tier

1.

22	$x^2 + y^2 = 80$	P1	for process to find gradient of tangent eg $\frac{10-0}{020}$ (= $\frac{1}{2}$) or for $20^2 + 10^2$ (= 500) or start to method to find angle between tangent and x axis, eg $\tan\theta = \frac{10}{20}$	
		PI	for process to find gradient of normal/radius eg $\frac{-1}{"0.5"}$ (=-2) or for $\sqrt{20^2 + 10^2}$ or $\sqrt{500}$ or 22.36 or 22.4 or completes process to find angle between tangent and x axis. eg $\theta = \tan^{-1}\left(\frac{10}{20}\right)$ (=26.565)	
		P1	for equation of tangent eg $y = "0.5"x + 10$ oe or for equation of radius eg $y = "-2"x$ oe or for using similar triangles eg $\frac{r}{10} = \frac{20}{\sqrt{500}}$ or for sin("26.565) = $\frac{r}{20}$	
		P1	for process to find the <i>x</i> coordinate eg "0.5" $x + 10 =$ "-2" x ($x = -4$) or for $r = \frac{20}{\sqrt{500}}$ × 10 or $r = 20$ × sin("26.565")	
		Al	oe	Accept $(4\sqrt{5})^2$ for 80

Pearson Edexcel - Tuesday 11 June 2019 - Paper 3 (Calculator) Higher Tier

2.

22	2.5	P1	use of $\sin 30 = \frac{1}{2}$ to find OA (= 8) or $OAB = 90^{\circ}$ eg $OA = 16\sin 30^{\circ}$ or right angle marked on diagram	
		P1	recognition that equation of circle is $x^2 + y^2 = r^2$	Accept $3p^2 + p^2 = r^2$ for the award of this mark
		P1	Correct substitution of p, 3p and r in $x^2 + y^2 = r^2$ eg $9p^2 + p^2 = OA^2$ or $(3p)^2 + p^2 = \text{``82''}$	Do not accept $3p^2 + p^2 = 8^2$ for the award of this mark
		A1	for answer in the range 2.5 to 2.53	Accept $\sqrt{6.4}$ or $\frac{4\sqrt{10}}{5}$ If an answer within the given range is seen in working and rounded incorrectly award full marks. Award 0 marks for the answer without supportive working.

Pearson Edexcel - Thursday 8 November 2018 - Paper 2 (Calculator) Higher Tier

3.

15	6.5	B1	oe	Accept (eg) $6\frac{1}{2}$ and $\sqrt{42.25}$

OCR GSCE – Tuesday 3 November 2020 – Paper 4 (Calculator) Higher Tier

4.

18	(a)	$\frac{6}{-3} \text{ or -2 and}$ $\frac{-1}{their - 2} \left[= \frac{1}{2} \right] \text{ oe}$	1	accept any correct method	Only award full marks if no wrong working $\frac{-6}{3} \text{ for first mark}$
	(b)	$y = \frac{1}{2}x + 7\frac{1}{2}$ oe	2	B1 for $y = \frac{1}{2}x + c$ or $y = mx + 7\frac{1}{2}$ or the equation of any line which goes through (-3, 6)	where $m \neq 0$

OCR GSCE – Tuesday 5 November 2019 – Paper 4 (Calculator) Higher Tier

5.

14		25	5	M1 for $m_1 = \frac{16}{-12}$ oe	gradient of radius
				10	gradient of tangent
				M1 for $y = (their \frac{12}{16}) x + p$	
				M1 for substituting (-12,16) into their equation accept any correct method	

OCR GSCE – Thursday 7 November 2019 – Paper 5 (Non-Calculator) Higher Tier

6.

21	(a)	6 (0,0)	1		
21	(b)	10	4	B3 for 5 and -5 Or M2 for $x^2 = 25$ Or M1 for $x^2 + (\sqrt{11})^2 = 36$	Accept a or b for x

OCR GSCE – Tuesday 11 June 2019 – Paper 6 (Calculator) Higher Tier

7.

-					
19	а	$x^2 + y^2 = 29$ oe	4	B2 for 29 or $\sqrt{29}$ or 5.38(5) to 5.39	
		•			
				or	
				M1 for $2^2 + 5^2$ or $\sqrt{2^2 + 5^2}$ or $2^2 + (-5)^2$ or	Condone poor use of or missing brackets for M1
				$\sqrt{2^2 + (-5)^2}$	eg $-5^2 + 2^2$ or $2^2 + -5^2$ earns M1 ,
					but 2 ² - 5 ² does NOT earn M1
					but 2 - 5 does NOT call III
				AND	
					Condone other letters instead of r.
				B1 for $x^2 + y^2 = k$ where k is a number > 0	except x and y.
				or $x^2 + y^2 = r^2$	
-			_	2	F
	b	2.5 or $\frac{5}{2}$ oe	2	M1 for $-\frac{2}{5}$ oe or -0.4 seen or	M1 for $[y =]\frac{5}{2}x [+ c]$ oe Condone $-\frac{2}{6}x$ seen for M1
		-		use of $m_1m_2 = -1$ with their radius gradient	Condone $-\frac{2}{x}$ seen for M1
				, - , , , , , , , , , , , , , , , , , ,	5

OCR GSCE - Monday 12 November 2018 - Paper 6 (Calculator) Higher Tier

8.

17		$(\sqrt{6}, 2\sqrt{6})$ and $(-\sqrt{6}, -2\sqrt{6})$	5	B4 for $(x =) \pm \sqrt{6}$ or one intersection	•
				or	
				M3 for $x^2 = 6$	
				or	
				M2 for $x^2 + 4x^2 = 30$ or $5x^2 = 30$	
				or	
				M1 for $x^2 + (2x)^2$	Condone missing brackets for M1

OCR GSCE - Wednesday 8 November 2017 - Paper 6 (Calculator) Higher Tier

9.

17	(a)	$x^2 + y^2 = 100$ oe	1		
	(b)	$8^2 + (-6)^2 = 100$, so it's on the circle oe	2	M1 for $8^2 + ([-]6)^2$ seen or for substituting $x = 8$ and $y = -6$ into their part (a)	$\frac{Alternative}{\sqrt{8^2 + 6^2}} = 10$
					their part (a) must be an equation in both x and y.
	(c)	3y - 4x + 50 = 0 oe	5	B2 for [tangent gradient =] $\frac{4}{3}$ oe or M1 for $\pm \frac{6}{8}$ or $\pm \frac{8}{6}$ oe	Equivalents include: $y = \frac{4}{3}x - \frac{50}{3}$ Condone decimals with at least 2 decimal places rot: Eg. $y = 1.33x - 16.67$
				AND	
				M2 for $y + 6 = their \frac{4}{3}(x - 8)$ oe	Equivalent for M2 includes
				or	$y = their \frac{4}{3}x + c$ and then attempt
				M1 for $y = their \frac{4}{3}x + c'$	to find c by substituting in $y = -6$ and $x = 8$

AQA GSCE – Thursday 8 June 2020 – Paper 3 (Calculator) Higher Tier 10.

25	6	B1	

AQA GSCE – Tuesday 11 June 2019 – Paper 3 (Calculator) Higher Tier 11.

	√144 or 12	B1	radius of larger circle may be seen on diagrai	m			
	$\frac{4}{5}$ × their 12 or 9.6	M1	their 12 must be a value may be seen on diagram				
	$\frac{\text{(cos }AOB =)}{\text{their } 12^2 + \text{their } 9.6^2 - 20^2}$ $2 \times \text{their } 12 \times \text{their } 9.6$ or $\frac{144 + 92.16 - 400}{230.4}$ or $-\frac{32}{45} \text{ or } -0.71$	M1dep	oe				
27	\cos^{-1} their $-\frac{32}{45}$	M1dep	dep on M2				
	135.()	A1					
	Additional Guidance						
	$\frac{4}{5} \times 144 = 115.2$ $(\cos AOB =) \frac{144^2 + 115.2^2 - 20}{2 \times 144 \times 115.2}$	B0 M1 M1M0A0					
	12 seen, but a different value us cannot score B1M1	us of the larger circle					
	x + y = 12 seen, but $x = 6$ used	В0М1					

AQA GSCE – Thursday 7 June 2018 – Paper 2 (Calculator) Higher Tier 12.

	$x^2 + y^2 = 25$	B1		
22	Add	ditional G	uidance	

AQA GSCE – Tuesday 12 June 2018 – Paper 3 (Calculator) Higher Tier 13.

	$4^2 + y^2 = 80$ or $y = \sqrt{64}$	M1	oe May be implied from 8 o	n diagram	
28	y = -8	A1	Accept (4, -8)		
	$\frac{\text{their} - 8}{4}$ or -2	M1	oe gradient of radius <i>OP</i>		
	$-1 \div \text{their} -2 \text{ or } \frac{1}{2}$ or $-1 \div \text{their gradient}$	M1	gradient of tangent at P		
	$y = \frac{1}{2}x - 10$ or $y + 8 = \frac{1}{2}(x - 4)$	A1	oe Ignore further working		
	Additional Guidance				
	Additional Suldance				
	$y + 8 = \frac{1}{2}(x - 4)$ followed by error expanding and/or collecting terms			M1A1M1M1A1	
	$y = \frac{1}{2}x - 10$ in working and $\frac{1}{2}x - 10$ only on answer			M1A1M1M1A1	
	$\frac{1}{2}x - 10$			M1A1M1M1A0	
	$(y = \sqrt{64})$			M1	
	y = 8			A0	
	Gradient OP = 2			M1	
	Perpendicular gradient = $-\frac{1}{2}$			M1 A0	

AQA GSCE – Thursday 2 November 2017 – Paper 1 (Non - Calculator) Higher Tier 14.

28(a)	$(0^2 +) 6^2 = 36$ or $(OA =)$ radius = 6 or $\sqrt{36} = 6$	B1	oe		
	Additional Guidance				
	0 + 36 = 36			В0	

28(b) (6, 0) B1

	Alternative method 1		
	$\frac{6 - \text{their } 0}{0 - \text{their } 6} \text{or} \frac{\text{their } 0 - 6}{\text{their } 6 - 0}$	M1	gradient AB
	or $\frac{6}{-6}$ or $\frac{-6}{6}$ or -1		
	gradient OM × gradient AB = −1		must see correct working for M1
28(c)	and gradient $OM = 1$ (and $y = x$)	A1	
	Alternative method 2		
	$\left(\frac{6+0}{2}, \frac{0+6}{2}\right)$ or $(3, 3)$	M1	coordinates of M
	gradient $OM = 1$ (and $y = x$) or (0, 0) and (3, 3) (and $y = x$)	A1	must see correct working for M1

	$x^2 + x^2 = 36$ or $2x^2 = 36$ or $y^2 + y^2 = 36$ or $2y^2 = 36$ or (-)6 cos 45° or (-)6 sin 45°	M1	oe equation
28(d)	(-) $\sqrt{\frac{36}{2}}$ or (-) $\sqrt{18}$ or (-) $3\sqrt{2}$ or (-) $\frac{6\sqrt{2}}{2}$ or (-) $\frac{6}{\sqrt{2}}$	M1	
	$(-\sqrt{18}, -\sqrt{18})$ or $(-3\sqrt{2}, -3\sqrt{2})$ or $(-\frac{6\sqrt{2}}{2}, -\frac{6\sqrt{2}}{2})$ or $(-\frac{6}{\sqrt{2}}, -\frac{6}{\sqrt{2}})$	A1	oe surd form

AQA GSCE – Wednesday 25 May 2017 – Paper 1 (Non - Calculator) Higher Tier 15.

20 16 B1

AQA GSCE – Sample Paper 1 (Non - Calculator) Higher Tier

16.

	Alternative method 1			
	P(1, 3) or $y = 3$ or grad $OP = 3$	B1		
	grad $PQ = -\frac{1}{\text{their 3}}$ or $-\frac{1}{3}$	M1		
	$y = (\text{their } -\frac{1}{3}) \ x + c$ and substitutes (1, their 3) or $y - \text{their } 3 = (\text{their } -\frac{1}{3})(x - 1)$	M1dep	$\frac{\text{their 3}}{x-1} \text{ or } -\frac{\text{their 3}}{x-1}$	
28	Substitutes $y = 0$ in their equation	M1dep	$-\frac{\text{their }3}{x-1} = \text{their } -\frac{1}{3}$	
	(10, 0)	A1		
	Alternative method 2			
	P(1, 3) or $y = 3$ or grad $OP = 3$	B1		
	$\frac{\text{their 3}}{1} = \frac{QN}{\text{their 3}}$	M1dep		
	their 3 × their 3 or 9	M1dep		
	$tan PON = \frac{their 3}{1}$	M1	N is on the x-axis PN is perpendicular to the x-axis	
	(10, 0)	A1		